
The market for mobile applications is growing and more and more transactions are made on mobile
devices. A variety from mobile payment systems is trying to attract the users and this creates a
growing field for attackers to get into this systems and manipulate them.

Now, the shop webpages also have to work on various platforms and devices and special versions
for each device are often created. This again gives attackers a big range of attack vectors.

There are mainly significant problems in the mobile application sector that is occuring mainly all
time. The developers of the most mobile apps do not have the technical skills and experience to
secure their applications. But this unsecure applications are provided for download at the big app
stores. Thus affects finally the secure infrastructure of the mobile devices connected to shops like
apple itunes, apple appstore, google app-store, open-market and windows market-place.

The publication control systems of these app-stores and market-places are proportinal low to the
available safety risk that the manufacturer and vendor takes for the customer. As far as an attacker is
able to compromise only one app, he can get control of the affected device. We saw that in the last 2
years by criminals and government acting agencies that try to evade the security concepts of the iOS
product series at all instances. By watching the public sector you can see that there is a big need for
criminals and government agencies to take control of mobile devices.

The main problem with application bugs is that they are produced by a third party to the
manufacturer without correct responsibility. In case of a critical vulnerability the manufacturer
(apple) does not care about the disclosure or risk. A researcher or coordinator has to get in contact
with the developer (3rd party).

Normally the manufacturer of the product should take control about the notification and disclosure
process because the products are running on there device finally. In such a case the apple product
security team would like to say nothing and let the researcher interact with the developer. In 80% of
the disclosed vulnerabilities in our mobile feed we got no reply by the developer which results in a
full disclosure. Even after the release the manufacturer mostly would like to not become responsible
for such bugs even if the customers are finally affected.

Facebook portal for example rushs to inform all application vedors about discovered bugs, even if
they are created by a third party. Same should be done by manufacturer to secure the product line
and grant that no backdoors or permanent exploitable security bugs are available over years.

An adopting problem occurs very often when the same issues are as well adopted to several other
mobile applications. Lets say there is a manufacturer programming a web interface for wifi. Now he
used the webkit and java coding language with the available programming engines. In case of that
there are often old packages to generate simply functions for iOS or there are wrong tutorials
publicly available that teaches the young developer the wrong way of implementation. In a lot of
test cases we found a UI that was programmed by one developer and shared to different parties for
adopting the modules.

The vulnerabilities we mention are actual treads to the mobile app and shop security. There is a lot
of work for security researcher to make this systems more secure, the vendors are in charge to build
internal security teams or let external researchers test the systems. Because of the actual laws
against hacking the independent research is very limited in looking for vulnerabilities on their own.
Without the acceptance of the vendor its against the law to test a computer system for common bugs
and vulnerabilities. But sadly many vendors do not have internal security teams or book external
experts to secure their systems.

The image above shows an application-side input validation vulnerability and filter bypass issue in
a bluetooth chat software of the apple mobile iOS. The attacker can send malicious messages to the
victim via bluetooth protocol of the iOS device.

The picture above shows the same issue within another mobile application. The issue occurs in the
same location of the application because of significant failure in validation procedure. The same
module has been adopted to another software which results in a general security issue.

In the next picture we can see a vulnerability that occurs because of the wrong encoding of the
device name (c:id) value. The bug allows to use the name value of a stored code to trigger a
persistent script code execution.

The same issue occurs also in the following code line of multiple other mobile apps with wifi
interface. Reason is that apple does not prevent the device name because of allowing any char to
rename it. Thus results in a permanent failure of validation in hundrets of application without
knowledge of the third party developers.

Beginning of the year 2015 the core researchers of the vulnerability laboratory revealed a backdoor
in the invoices of apple itunes & appstore when processing to buy a mobile web-application. The
vulnerability was connected to the shop infrastructure, hardware settings and email configuration.
The bug had an impact to compromise another users device or mobile applications.

The last picture demonstrates how the code of the hardware has been used to the buy an app for
final exploitation of the apple invoice.

Reference(s):
http://www.vulnerability-lab.com/show.php?cat=mobile
http://www.vulnerability-lab.com/search.php?search=apple+ios&submit=Search
http://www.vulnerability-lab.com/search.php?search=android&submit=Search
http://www.vulnerability-lab.com/get_content.php?id=1597
http://www.vulnerability-lab.com/get_content.php?id=1481
http://www.vulnerability-lab.com/get_content.php?id=1410
http://www.vulnerability-lab.com/get_content.php?id=1413
http://www.vulnerability-lab.com/get_content.php?id=1512

http://www.vulnerability-lab.com/show.php?cat=mobile
http://www.vulnerability-lab.com/get_content.php?id=1512
http://www.vulnerability-lab.com/get_content.php?id=1413
http://www.vulnerability-lab.com/get_content.php?id=1410
http://www.vulnerability-lab.com/get_content.php?id=1481
http://www.vulnerability-lab.com/get_content.php?id=1597
http://www.vulnerability-lab.com/search.php?search=android&submit=Search
http://www.vulnerability-lab.com/search.php?search=apple+ios&submit=Search

